skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barkam, Hamza Errahmouni"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 6, 2026
  2. Free, publicly-accessible full text available May 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Abstract Although the connectivity offered by industrial internet of things (IIoT) enables enhanced operational capabilities, the exposure of systems to significant cybersecurity risks poses critical challenges. Recently, machine learning (ML) algorithms such as feature-based support vector machines and logistic regression, together with end-to-end deep neural networks, have been implemented to detect intrusions, including command injection, denial of service, reconnaissance, and backdoor attacks, by capturing anomalous patterns. However, ML algorithms not only fall short in agile identification of intrusion with few samples, but also fail in adapting to new data or environments. This paper introduces hyperdimensional computing (HDC) as a new cognitive computing paradigm that mimics brain functionality to detect intrusions in IIoT systems. HDC encodes real-time data into a high-dimensional representation, allowing for ultra-efficient learning and analysis with limited samples and a few passes. Additionally, we incorporate the concept of regenerating brain cells into hyperdimensional computing to further improve learning capability and reduce the required memory. Experimental results on the WUSTL-IIOT-2021 dataset show that HDC detects intrusion with the accuracy of 92.6%, which is superior to multi-layer perceptron (40.2%), support vector machine (72.9%), logistic regression (84.2%), and Gaussian process classification (89.1%) while requires only 300 data and 5 iterations for training. 
    more » « less